Pediatric Stroke: A Rare Disorder with a Lifetime of Disability

Katrina Peariso, MD, PhD
Cincinnati Children’s Hospital Medical Center

5th Annual Greater Cincinnati Stroke Consortium
St. Elizabeth’s Medical Center
October 19, 2018
Disclosures

No financial disclosures or conflicts of interest
Learning Objectives

After the presentation, the participant should be able to:

• Understand the epidemiology in addition to the short- and long-term burden of pediatric stroke (‘Debunking the myths’)

• Identify common pediatric stroke presentations

• Describe the initial assessment and stabilization

• List elements of the work-up for stroke etiology, secondary prevention and rehabilitation
Pediatric Stroke Myth #1: Kids don’t have strokes

• Incidence of pediatric acute ischemic stroke is 1.2-13/100,000
• Pediatric stroke rates in GCNK region: 4.4/100,000

**Incidence of young adult stroke (18-55) 6.6-11.4/100,000
Pediatric Stroke Myth #2: Kids recover better than adults

http://sites.bu.edu/ombs/2018/02/15/how-is-the-brain-plastic/
Pediatric Stroke Myth #2: Kids recover better than adults

- Prospective study of 95 children (1 mo – 16 years) and 154 young adults (16-45 yrs)

Pediatric Stroke Myth #2: Kids recover better than adults

- Mortality: 14% in children; 7% in young adults
 - Median survival time for those that died
 Children: 5 months (IQR 14 days – 3 yrs)
 Young adults: 4 days (IQR 4 days – 3 years)

- Children exhibited more behavioral disturbances
- Young adults felt the stroke effected their everyday life more

Pediatric Stroke Myth #3: There is nothing to be done for kid strokes

- NOT TRUE!!!

- There is a general increase in the use of thrombolysis, particularly in the adolescent population

- Interventional therapy is being increasingly used in pediatric patients

- These therapies have little to no evidence base beyond case series and expert opinion in the pediatric population (for now…)
Pediatric stroke is divided into two distinct populations

Neonatal: 20 weeks gestation – 28 days of life
Childhood: 29 days – 18 years

Neonatal Stroke

Risk Factors for Perinatal Arterial Ischemic Stroke

<table>
<thead>
<tr>
<th>Type of Risk Factor</th>
<th>Risk Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal</td>
<td>Thrombophilia, Infertility, Prolonged rupture of membranes, Preeclampsia, Smoking, Intrauterine growth retardation, Infection, Maternal fever</td>
</tr>
<tr>
<td>Fetal</td>
<td>Thrombophilia, Congenital heart disease, Arteriopathy, Hypoglycemia, Perinatal asphyxia, Infection, Need of resuscitation, Apgar score of <7 at 5 minutes</td>
</tr>
<tr>
<td>Placental</td>
<td>Chorioamnionitis, Placental infarcts, Placenta weighing less than tenth percentile</td>
</tr>
</tbody>
</table>

- **Incidence ~13/100,000**
- **2nd most common cause of perinatal seizures**
 - as many as 94% have acute symptomatic seizures
 - Epilepsy will occur in 11% NAIS and 19% PPAIS
- **Mortality 0.16/100,000**
- **Recurrence risk 1-2%**
Childhood Stroke

Common Etiologies:

• Cardioembolic - 20% of childhood strokes
 - TTE
 - If negative, TEE or cardiac MRI

• Cervicocephalic arterial dissection (CCAD) – 7-19%
 - MRA with T1* Fat Sat; CTA; DSA

• Arteriopathy (Not including SCD) – 27-48%
 - MRA, CTA, DSA

• Hypercoagulable work-up
 - will be abnormal in 30-50%

Other Considerations:

• Autoimmune vasculitidies
 - SLE, cPACNS

• Genetic/Metabolic
 - Sickle cell anemia, CADASIL, Fabry’s dz
 - homocysteinuria, MELAS
 - EDS, FMD, Marfan’s, COL4A1,
 - Loeys-Dietz syndrome
Recognition is key…

The median time from symptom onset to diagnosis in pediatric stroke is **24 hours**

In-hospital delays account for most of this time
7 yo male presents to the ED with concern for seizure activity

- LSN 20:30; Time to ED 21:20
- Left gaze deviation; Right motor response ‘decreased’ on initial evaluation
- Left face twitching 15-20 min – ativan and fosphenytoin given, gaze deviation and facial twitching resolve
- Time to Head CT 21:40 – Normal imaging
- GCS 11 after medication and Head CT, but moving all extremities equally
Presentation of pediatric stroke/TIA: Raising the Index of Suspicion

- Stuttering onset of symptoms
- Seizures
- Headaches
- Ataxia
- ‘Classic’ stroke symptoms (hemiparesis, speech abnormalities, hemisensory loss, visual changes, etc.)

Retrospective analysis of the **Face Arm Speech Test (FAST)** and the **Recognition of Stroke in the Emergency Room (ROSIER)** tool in true pediatric stroke cases were positive in 78% and 81%, respectively. Yock-Corrales, *et al.* **BMC Pediatrics** 2011, 11:93
But what about the stroke mimics?

- Seizure with Todd’s Paralysis
- Complex/Familial Hemiplegic Migraine
- Stroke-like episodes
 - Sturge-Webber Syndrome
 - Mitochondrial Disorders
 - Alternating Hemiplegia of Childhood

Emergent MRI may be necessary to sort this out
Assessment of Pediatric Stroke – PNIHSS¹

- NIHSS² is a validated assessment tool that can be utilized by trained medical personnel (physician, nurse) from a variety of sub-specialties (neurologist, internal medicine, EM, etc.)

- Facilitates communication between providers for patient care in addition to a standardized scale for clinical trials

- Pediatric NIHSS¹ validated for use in 2011 – only validated for use by trained child neurologists (requires a toy and knowledge of early childhood development in patients <6 years)

- Both have been shown to be the most important predictor of a favorable outcome³,⁴

Clinical Case Continued

- Patient was dispositioned to the PICU for observation for new onset seizure with status epilepticus

- Continued to have waxing and waning mental status during 36 hour observation in ICU
 - Neurology consultation documents mild dysarthric speech, but no other focal deficits
 - Routine EEG 24 hours after presentation normal
 - Nursing documentation of neurochecks remains ‘non-focal’

- Transferred out to neurology floor – soon after, had an episode of vomiting
 - Would only arouse to noxious stimulus
 - Found to have acute right face, arm and leg weakness with ‘slurred speech’
~1 hour after acute change

- MRI demonstrates acute ischemic changes
- MRA does not show vasculopathy changes

~11 hours after acute change
Fibrinolysis in Pediatric Stroke (rtPA)

• Not FDA approved for stroke treatment in persons <18 years of age

• TIPS trial (multi-center NIH funded trial designed to assess safety and efficacy of rtPA in pediatric stroke) stopped after having enrolled only one patient in 4 years

• Recent retrospective reports demonstrate that rtPA use in pediatric stroke is increasing from 5.2/1000 children to 9.7/1000 children
 - Treated children tended to be older (mean age: 13.1 years versus 8.1 years)
 - The majority of this increase is taking place at non-children’s hospitals

• Use in pediatric patients recommended to be done in the setting of a clinical trial

• However, current off-label use should, at minimum, follow current AHA/ASA Guidelines for rtPA administration and strict monitoring criteria post administration

1) Rivkin, MJ et al., Stroke (2015); 46:880-885
2) Alshekhlee, A et al. Pediatric Neurology (2013); 49:313-318
3) Gross, H; Guilliams, KP; Sung, G Neurocrit Care (2015); 23:S94-S102
Interventional Therapy

In 2012:

- Recommendations for interventional therapy in pediatric stroke was based on 34 case reports utilizing either IA rtPA or clot retrieval
 - Mean time to recannalization 14 hours (2-72 hours)
 - 12/34 Complete recannalization; 13/34 Incomplete recannalization
 - Complications in 10/34 (ICH 8/34; Symptomatic ICH 1/34)
 - Class IIb recommendation

- At centers with experienced pediatric angiographers, interventional therapy for pediatric AIS with proximal artery occlusion may be considered

- Using the Kids Database from 2012 – interventional therapy was used in ~1% of pediatric stroke cases

- A more recent meta-analysis looking at the safety and efficacy of 1º versus 2º (post-thrombolysis) mechanical thrombectomy in pediatric patients demonstrate that there was no difference in the safety or efficacy of the two techniques
Anticoagulation/antiplatelet therapy after pediatric AIS –
Recommendations from American College of Chest Physicians

<table>
<thead>
<tr>
<th>Stroke Etiology</th>
<th>Anticoagulation/ Antiplatelet</th>
<th>Timing</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>UFH OR LMWH OR ASA</td>
<td>Immediate</td>
<td>Grade 1C</td>
</tr>
<tr>
<td>Re-stroke on ASA</td>
<td>Clopidogrel OR UFH OR LMWH</td>
<td>At time of new symptoms</td>
<td>Grade 2C</td>
</tr>
<tr>
<td>Cardioembolic†</td>
<td>LMWH (transition to warfarin)</td>
<td>Immediate (VKA 14 days)</td>
<td>Grade 2C</td>
</tr>
<tr>
<td>Cervicocerebral Arterial Dissection†</td>
<td>UFH OR LMWH (transition to warfarin)</td>
<td>Immediate (VKA 14 days)</td>
<td>Grade 2C</td>
</tr>
<tr>
<td>Non-Moya-Moya Vasculopathy†</td>
<td>UFH OR LMWH (transition to warfarin)</td>
<td>Immediate (VKA 14 days)</td>
<td>Grade 2C</td>
</tr>
<tr>
<td>Moya-Moya</td>
<td>ASA</td>
<td>Immediate</td>
<td>Grade 2C</td>
</tr>
</tbody>
</table>

†Decision will be made based upon both etiology and infarct size/risk of hemorrhage

Strong recommendation to involve a trained hematologist in the care of the pediatric stroke patient

Risk of Hemorrhage with Anticoagulation after Pediatric Ischemic Stroke

Safety of Anticoagulants in Children with Arterial Ischemic Stroke

• Best data in children: Prospective cohort study of 215 children with AIS; 123 received anticoagulation therapy (ACT) for a minimum of 24 hours within 7 days of diagnosis
 - UFH: (No loading dose), titrated to PTT = 60-85 sec, or anti-Xa 0.35-0.7 Units/mL
 - LMWH: 1 mg/kg/dose BID (goal anti-Xa 0.5-1.0 Units/mL at 4 hours post-dose)
 - warfarin: 0.2 mg/kg/day titrated to INR = 2-3

• 83% of patients in ACT group initiated therapy within 72 hours of diagnosis

• ICH occurred in the following:
 No therapy/ASA only: 12/75 (16%)
 ACT: 14/123 (11%); 9 were asymptomatic, 5 were symptomatic, No ICH related mortality

• Efficacy has yet to be established in children
Work-up of the Case

- Patient had a TTE that was negative for PFO or vegetations; F/U TEE also negative
- CTA – No vascular abnormalities suggestive of vasculopathy or vasculitis in the neck or major vessels from the Circle of Willis
- ESR 8 and CRP 1.6 on day of stroke
- Hypercoagulable work-up: Protein C deficiency secondary to critical illness
- Metabolic work-up (Lactate/Pyruvate, SAA, UOA, acylcarnitine profile): WNL
- VZV Ab: Neg; Mycoplasma IgM and IgG + (consistent with his pneumonia 3 weeks ago)
DSA gives the diagnosis...

7 days after presentation ~4 months after presentation

Transient Cerebral Arteriopathy
(aka: Focal Cerebral Arteriopathy)
Transient Cerebral Arteriopathy

- Unilateral focal/segmental stenosis or occlusion involving the distal ICA and initial segments of ACA or MCA\(^1\)

- Non-progression of symptoms beyond 6 months\(^1\)

- Hypothesized to be a post-infectious phenomenon\(^2\)

 Risk factors: 1) infection in the week prior to infarction (OR 6.3)
 2) undervaccination (OR 8.2)
 3) African-American race (OR 1.9)
 4) Rural residence (OR 3.0)

- 25% risk of stroke recurrence within 1 year\(^3\)

- Retrospective studies suggest possible role for steroids\(^4\)

Clinical Case: ICU course after AIS Diagnosis

- UFH gtt discussed, once stroke diagnosed, but felt risk of hemorrhage too high
- He was intubated 12 hours after re-admission to the PICU due to decreasing mental status with hypercarbia
- Neurosurgery consulted, but initially edema managed with hyperosmolar therapy
- Patient MS/neuro exam improved over 24 hours while on HTS, so hyperosmolar therapy discontinued and the patient was extubated
- Patient’s mental status decreases and he begins vomiting; Head CT repeated

86 hours after recognized stroke
Managing Post-stroke Edema –
Borrowing from Adult AHA/ASA Recommendations

- Maximal medical management is reasonable in patients that do not exhibit neurological decline (level of consciousness, ipsilateral pupillary dilatation, brainstem signs)

- Medical management for patients exhibiting neurological decline
 - **Osmotic therapy is reasonable** (Class IIa, L3)
 - Barbiturates, hypothermia and corticosteroids are not recommended (Class III, L3)

- Three prospective randomized trials (DESTINY\(^2\), DECIMAL\(^3\) and HAMLET\(^4\)) demonstrated *improved mortality* with **decompressive hemicraniectomy** performed within the first 48 hrs after symptom onset compared with maximal medical management
 - Pooled analysis showed *improved outcomes* (mRS)

- In the past 8 years, 3 case series in children have shown moderate to good outcomes with DHC after malignant MCA infarction\(^5-7\)

Decompressive Craniectomy after AIS

- Patient re-intubated, bolused with hyperosmolar therapy
- Taken emergently to the OR for craniectomy 88 hrs after apparent stroke event
- ICP able to be well managed and patient has made a moderate functional recovery with mild R hemiparesis, R spasticity, mild dysarthria
The patient survived his acute ischemic stroke

Now what?
Functional Outcomes – Overall promising

- Short-term FU: children, n=94
 - 36% mRS 0
 - 21% mRS 1
 - 12% mRS 2
 - 13% mRS 3
 - 10% mRS 4
 - 9% mRS 5
 - p=0.810

- Short-term FU: young adults, n=151
 - 33% mRS 0
 - 28% mRS 1
 - 20% mRS 2
 - 7% mRS 3
 - 3% mRS 4
 - 5% mRS 5
 - p=0.176

- Long-term FU: children, n=95
 - 27% mRS 0
 - 28% mRS 1
 - 15% mRS 2
 - 16% mRS 3
 - 14% mRS 4
 - p=0.466

- Long-term FU: young adults, n=154
 - 29% mRS 0
 - 25% mRS 1
 - 25% mRS 2
 - 9% mRS 3
 - 4% mRS 4
 - 7% mRS 5
 - p=0.525
Cognitive Outcomes
Psychosocial

Functional Outcomes
Cognitive

![Graph showing learning and memory subtest scores](image)

Figure 5. Mean results of learning and memory subtest scores. LL = list learning; MF = memory for faces; MN = memory for names; NM = narrative memory; PM = picture memory; SR = sentence repetition.

Psychosocial

![Bar chart showing SDQ and SSIS & VABS results](image)

Effect on the Parent

- Qualitative study with the parents of children who suffered an AIS
- 6 themes came from the interviews
 - Unawareness of stroke and the brutality of the diagnosis
 * fear (child’s death, recurrence, long-term disability)
 * guilt for missing the signs
 - Lack of information regarding the disease/condition (Why?)
 - Feeling of abandonment after hospital discharge
 - Focus on functional recovery
 - Late awareness of behavioral/cognitive disorders
 - Need for psychological/social support and family adaptation

Take Home Message…

- Children do have strokes – unfortunately the diagnosis is often delayed

- There are things we can do to help improve outcomes acutely - although the evidence for the adult SOC in children is weak or lacking

- Their mortality/functional recovery not significantly different than that of young adult strokes

- While the functional recovery is generally good, the cognitive and behavioral outcomes may cause significant disability

- Care for these patients needs to extend to the whole family
Acknowledgements

CCHMC Neurocritical Care Consultants
- Eileen Broomall, MD
- Mike Taylor, MD

CCHMC Radiology Group
- James Leach, MD
- Todd Abruzzo, MD

UC Stroke Team/ NSICU
- Dawn Kleindorfer, MD
- Opeolu Adeoye, MD
- Daniel Kanter, MD
- Simona Ferioli, MD
- Jordan Bonomo, MD
- William Knight, MD
- Brandon Foreman, MD
- Natalie Kreitzer, MD
- Kyle Walsh, MD
- Moshe Mizrahi, MD

CCHMC Emergency Medicine
- Andrea Rinderknecht, MD