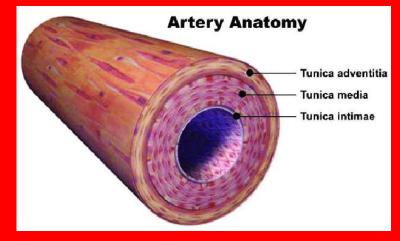
Blunt Cerebrovascular Injuries (BCVIs): Stroke Risk and Management

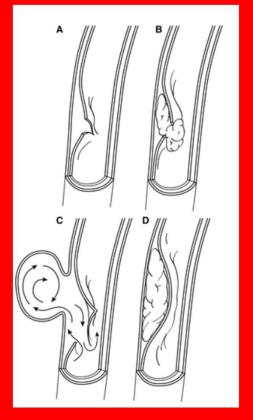
October 27,2023 9th annual Greater Cincinnati Stroke Consortium Symposium

UC Gardner Neuroscience Institute

Matthew Stedman Smith, MD Assistant Professor University of Cincinnati College of Medicine Departments of Neurology and Neurosurgery



BCVI - Definitions


- 1.) BCVIs are a type of dissection
- 2.) Tear in the intima of artery
- 3.) hematoma formation within tunica media
- 4.) Can cause narrowing or enlargement of artery

BCVI - Pathophysiology

A: Tear in intima wall B: Thrombus formation due to endothelial damage C: Dissecting Aneurysm formation from expanding adventitia D. Thrombus formation within tunica Media causing vessel narrowing

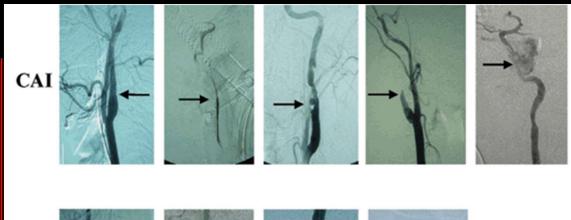
due to Blunt Traumatic Cerebrovascular Injury." *Stroke*. 2020;51:353-360

BCVI – Epidemiology

- Account for 2.5% of all strokes
- In young patients (<40) account for 20% of strokes
- About 1% of all trauma patients have a BCVI
- Increases to 8% when cervical trauma suspected

Hundersmarck et al, "Blunt Cerebrovascular Injury: Incidence and long term followup." *Eur J Trauma Emerg Surg*. 2021 feb;47(1):161-170

BCVI – classification


Biffl injury grade	Angiograhic characteristics	
l	Luminal irregularity or dissection with < 25% luminal narrowing	
11	Dissection or intramural hematoma with ≥25% luminal narrowing	
	Pseudoaneurysm	
IV	Occlusion	
V	Transection with free extravasation	
From Biffl et al.: Blunt carotid arterial injuries: implications of a new grading scale (Biffl et al. 1999)		

The Biffl injury grading scale for BCVI

Biffl et al "Blunt Carotid arterial injuries: implications of a new grading scale." J trau, injury, inf, and critical care. 47(5):845

BCVI – classification

Grade I Grade II Grade III Grade IV

Grade V

Figure 1 - Representative angiographic images of different grades of BCVI Injury Grade: Angiographic Finding; Grade I: Intimal Irregularity, <25% Luminal Stenosis; Grade II: Intimal Irregularity, >25% Luminal Stenosis, Intim Flap; Grade III: Pseudoaneurysm; Grade IV: Occlusion; Grade V: Transection with active extravasation.

Cothren and Moore "Blunt Cerebrovascular Injuries." Clinics. 2005 60(6): 489-496

BCVI – Stroke Risk

- 9% rate (inpatient) for all patients with BCVI
- 12% rate for ICA BCVI
- 7% rate for vertebral BCVI

Observational Study > J Trauma Acute Care Surg. 2022 Feb 1;92(2):347-354. doi: 10.1097/TA.000000000003455.

Factors associated with stroke formation in blunt cerebrovascular injury: An EAST multicenter study

Emily C Esposito ¹, Joseph A Kufera, Timothy W Wolff, M Chance Spalding, Joshua Simpson, Julie A Dunn, Linda Zier, Sigrid Burruss, Paul Kim, Lewis E Jacobson, Jamie Williams, Jeffry Nahmias, Areg Grigorian, Laura Harmon, Anna Gergen, Matthew Chatoor, Rishi Rattan, Andrew J Young, Jose L Pascual, Jason Murry, Adrian W Ong, Alison Muller, Rovinder S Sandhu, Rachel Appelbaum, Nikolay Bugaev, Antony Tatar, Khaled Zreik, Leah Hustad, Mark J Lieser, Deborah M Stein, Thomas M Scalea, Margaret H Lauerman

Multicenter Review of 777 BCVIs with inpatient only data.

BCVI – Stroke Risk

Variable	No. of Patients with BCVI Stroke	Percentage	P Value*
No. of injured vessels			
ICA			<.001
0	35/668	5 (4, 7)	
1	39/407	10 (7, 13)	
2	28/129	22 (15, 30)	
VA			<.001
0	49/419	12 (9, 15)	
1	32/630	5 (3, 7)	
2	21/155	14 (9, 20)	
ICA and/or VA			<.001
1	51/870	6 (4, 8)	
2	40/285	14 (10, 19)	
3	6/31	19 (7, 37)	
4	5/18	28 (10, 53)	

Original Research Neuroradiology

Natural History of Blunt Cerebrovascular Injury: Experience Over a 10-year Period at a Level I Trauma Center

^{(D}Lei Wu ⊠, ^{(D}Diana Christensen, ^{(D}Lindsey Call, ^{(D}Justin Vranic, ^{(D}Charles Colip, ^{(D}Daniel S. Hippe, ^{(D}Cordelie Witt, ^{(D}Robert H. Bonow, ^{(D}Mahmud Mossa-Basha

✓ Author Affiliations

Published Online: Sep 8 2020 https://doi.org/10.1148/radiol.2020192866

1204 patients with 1604 vessel injuries At least 1 outpatient followup Free Access

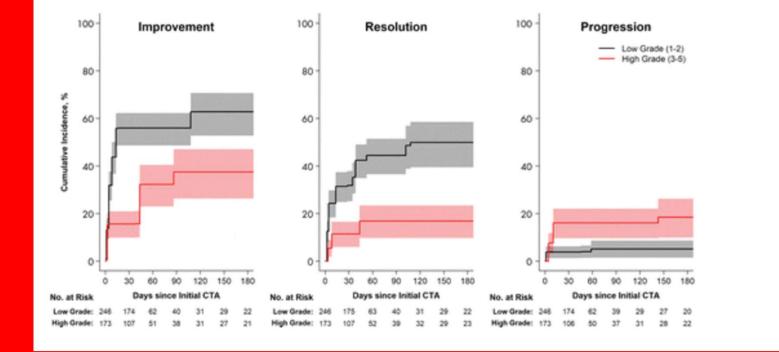
BCVI – Stroke Risk

daximum Denver grade			
ICA			<.001
0 (no injury)	35/668	5 (4, 7)	
1	5/204	2 (1, 6)	
2	16/166	10 (6, 15)	
3	24/124	19 (13, 27)	
4	19/37	51 (34, 68)	
5	3/5	60 (15, 95)	
VA			<.001
0 (no injury)	49/419	12 (9, 15)	
1	7/299	2 (1, 5)	
2	15/215	7 (4, 11)	
3	3/45	7 (1, 18)	
4	25/215	12 (8, 17	
5	3/11	27 (6, 61)	

Original Research Neuroradiology

Natural History of Blunt Cerebrovascular Injury: Experience Over a 10-year Period at a Level I Trauma Center

^{(D}Lei Wu ⊠, ^{(D}Diana Christensen, ^{(D}Lindsey Call, ^{(D}Justin Vranic, ^{(D}Charles Colip, ^{(D}Daniel S. Hippe, ^{(D}Cordelie Witt, ^{(D}Robert H. Bonow, ^{(D}Mahmud Mossa-Basha


✓ Author Affiliations

Published Online: Sep 8 2020 https://doi.org/10.1148/radiol.2020192866

1204 patients with 1604 vessel injuries At least 1 outpatient followup

BCVI – Progression

BCVI – Denver Criteria for Screening

Criteria Categories	Signs and Findings Present
Clinical signs and symptoms of BCVI	Arterial hemorrhage
	Cervical bruit
	 Expanding cervical hematoma
	 Focal neurological deficit
	 Neurologic findings unexplained by intracranial findings
	 Ischemic stroke on secondary CT scan
Clinical risk factors that mandate radiologic screening for BCVI	 High-energy mechanism
	 Horner's syndrome
	 Neck soft tissue injury
	Near hanging
	 Direct blow to the neck
Injuries of concern associated with possible BCVI	LeFort II or III fracture
	Cervical spine fractures
	 Basilar skull fracture with or without carotid canal involvement
	Diffuse axonal injury
	Diffuse axonal injury

Management – Grade 1 asymptomatic

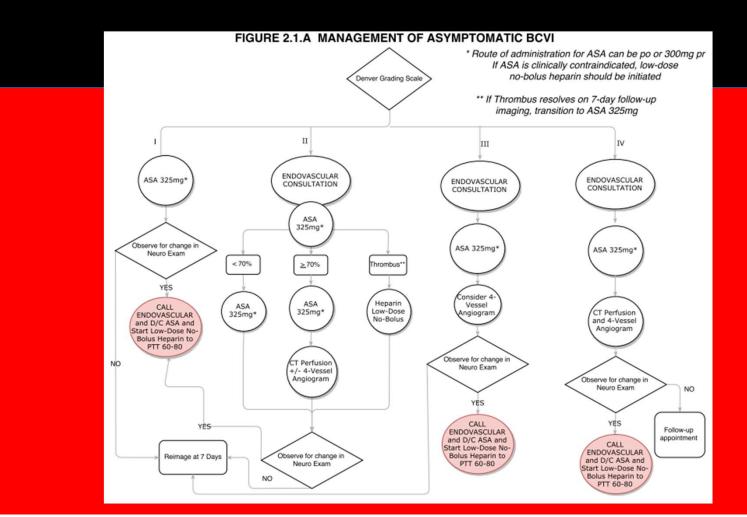
- ASA 81mg
- Repeat CTA in 7 days
- If CTA stable continue ASA for 90 days and then discontinue

Management – Grade 2 asymptomatic

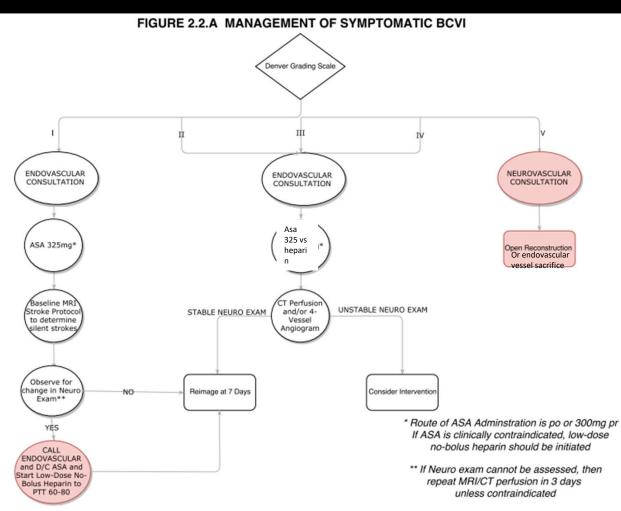
- ASA 325mg
- Repeat CTA in 7 days
- If CTA stable continue ASA for 90 days and then discontinue if 3 months CTA is improved.
- Consider perfusion imaging +/- cerebral angiography if stenosis > 70%

Management – Grade 3 asymptomatic

- Heparin gtt vs ASA 325
- Repeat CTA in 7 days
- If CTA stable continue anticoagulation/AP for 90 days and then discontinue if 3 months CTA is improved.
- If pseudoaneurysm enlarges consider endovascular flow diversion

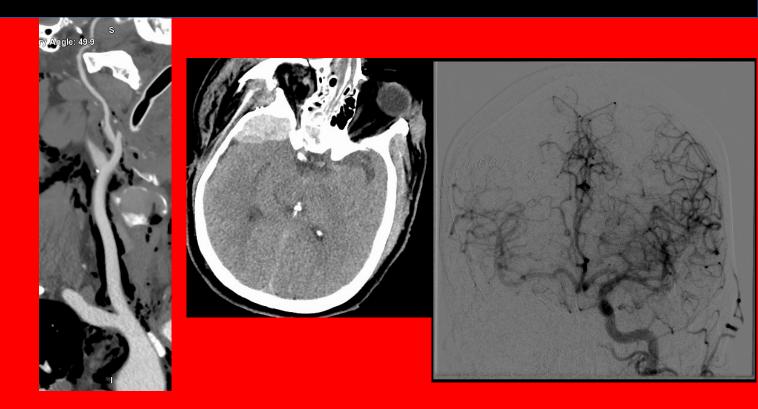

Management – Grade 4 asymptomatic

- Heparin gtt vs ASA 325
- Repeat CTA in 7 days (vessel may reopen)
- If CTA stable continue anticoagulation/AP for 90 days and then discontinue if 3 months CTA is improved.
- Consider CT perfusion +/- cerebral angiogram to determine reserve.



Management

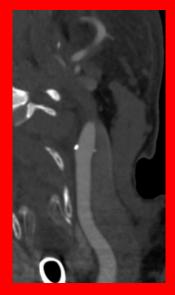
Management

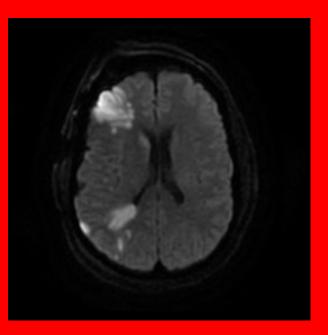

Case # 1

59 yo M polytrauma MVC Concurrent epidural hematoma

Angiogram with decreased watershed perfusion

Treated with heparin gtt 60-80ptt 48 hours after craniotomy


Case # 1

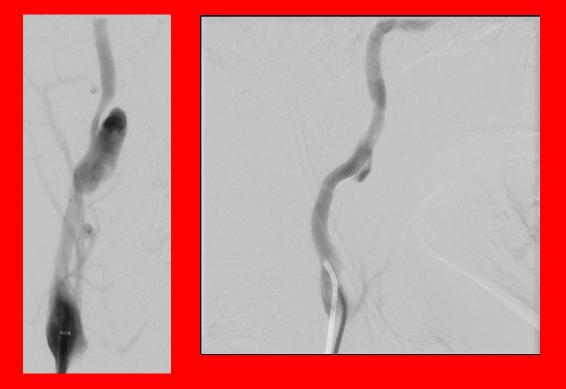


59 yo M polytrauma MVC Concurrent epidural hematoma

Angiogram with decreased watershed perfusion

Treated with heparin gtt 60-80ptt 48 hours after craniotomy

Case # 2



38 yo M with MVC vs pedestrian and polytrauma.

7 day repeat CTA with enlarging pseudoaneurysm, discharged on AC

3 month CTA pseudoaneurysm continues to enlarge

Flow diverting stent placed

Summary

- BCVIs are a cause of stroke in trauma patients
- Screen patients with positive Denver criteria using CTA neck
- Consider ASA for all dissections or heparin if thrombus or pseudoaneurysm present
- Consider endovascular consult for BCVI grade II (if > 70% stenosis) or all grade III and above.
- Reimage BCVIs at 7 days and then +/- again in 3 months if de-escalation of therapy needed

Blunt Cerebrovascular Injuries (BCVIs): Stroke Risk and Management

UC Gardner Neuroscience Institute

Questions?

Matthew Stedman Smith, MD Assistant Professor University of Cincinnati College of Medicine Departments of Neurology and Neurosurgery

